소재강국을 실현하는 글로벌 종합 소재연구기관

재료디지털플랫폼연구본부

재료인공지능·빅데이터연구실

실장 강성훈
실장 강성훈

연구실 소개

재료인공지능·빅데이터연구실은 소재·부품 제조 혁신 가속화 및 지능화를 위하여 디지털 기술과 물리적 기술이 통합된 디지털 전환 기술 개발을 목표로 하고 있으며, 이를 위해 국가주력산업에 적용 가능한 인공지능기술·가상공학기술·빅데이터 생성/수집/분석/관리 시스템 개발에 앞장서고 있다.

055-280-3578

주요 실적

  • 연구 데이터 자동 보정 및 분석관련 SCI 논문 4건, 프로그램 등록 2건
  • 딥러닝 기반 EBSD 데이터 초해상화 기술 관련 SCI 논문 게재 1건
  • 2D 미세조직 이미지로부터 해석용 3D 모델 형성 관련 SW 등록 1건

주요 연구분야

  • CAM·CNN 적용 마이크로패턴 인식 기술
  • Bayesian 기법 적용 신소재 물성 및 조성 탐색 기술
  • 미세조직 이미지 데이터 초해상화 기술 개발
  • 연구 데이터 결함 자동 보정, 자동 분석, 자동 수집 기술 개발
  • 데이터 및 인공지능 기반 재료 자율설계 플랫폼 개발

향후 연구계획

  • 열간단조공정의 플래쉬 최적화 및 예측을 위한 딥러닝 기술
  • 소규모 데이터로서 활용 가능한 인공지능 기반 재료자율설계 플랫폼 개발
  • 정형 및 비정형 데이터 자동처리 및 분석 프로그램 개발
  • 인공지능 기반 압연공정에서의 박판 품질 예측 기술
  • 인공지능 기반 용접 잔류응력 분포 예측 기술

연구개발 추진실적

소재 및 공정개발 적용을 위한 데이터 기반 인공지능 기술 개발

[과제 소개]

  • 고 신뢰성 연구 DB 구축을 위한 데이터 자동 보정, 분석 및 수집 시스템을 개발하고, 구축 데이터를 기반으로 효과적인 재료 설계 및 재료 공정 개발을 위한 인공지능 기술 개발

[기술개발 내용 및 특징, 성과]

  • 항불균일 광원에 의한 광학 미세조직 오류 보정 기술 개발
  • 불균일 초점에 의한 광학 미세조직 오류 보정 기술 개발
  • 다상 조직 광학 이미지로부터 자동 상구분 기술 개발
소재 및 공정개발 적용을 위한 데이터 기반 인공지능 기술 개발

미세조직 연계 자동차용 경량소재 가상공학 플랫폼 구축

[과제 소개]

  • 미세조직에 기반한 멀티스케일 시뮬레이션을 통해 경량 소재 제조 공정 (주조,압연,물성시험)을 가상공간에서 예측, 해석 하는 기술을 개발하고 이를 통해 신소재 및 부품 개발에 소요되는 시간 및 비용을 최소화

[기술개발 내용 및 특징, 성과]

  • 경량판재 성형성(FLD) 예측 기술 및 가상실험 SW 개발
  • 3차원 주조 미세조직 예측 SW 개발 및 상용프로그램 연계 모듈 개발
  • 실험 및 해석 데이터를 이용한 AI 기반 판재 엣지 신장성 예측 기술 개발
미세조직 연계 자동차용 경량소재 가상공학 플랫폼 구축

연구개발 성공사례

소재 및 공정개발 적용을 위한 데이터 기반 인공지능 기술 개발

[과제 정보]

  • 연구책임자: 김세종 박사
  • 전화: 055)280-3829
  • E-mail: 이메일 확인
  • 연구기간/비용: 21.01.01~21.12.31 / 1,344,872천원
  • 참여기관: 한국재료연구원

[기술의 핵심]

  • 소재 및 공정개발 적용을 위한 인공지능 기반 미세조직 자동 보정 및 분석 그리고 미세조직 이미지 초해상화 기술들을 개발

[기술 개발 내용 및 특징]

  • 다상조직 이미지 데이터 자동 보정 및 분석 기술 개발
  • 미세조직 이미지 초해상화 기술 개발
소재 및 공정개발 적용을 위한 데이터 기반 인공지능 기술 개발

[상용화 실적 및 산재권/논문실적]

  • 국내 SW 등록 : 1건(2021-038674)
  • 국내외 학술회의 발표 : 2건
  • 국내외 논문 게재 : 4건(Acta Materialia, npj Computational Materials 등)

[기술효과 및 활용분야]

  • 미세조직 데이터 처리 시 작업자에 의한 주관적인 오류를 가능한 최소화
  • 재료 데이터 분석 및 데이터베이스 구축 효율 극대화